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Abstract—To facilitate systematic and automated analysis
of game playing strategies, the fingerprint, a mathematical
technique that generates a functional summary independent of
representation, was developed. This study attempts to push the
boundaries of full state space investigation, looking at 3-state
finite transducers as a representation for playing Prisoner’s
Dilemma. There are a staggering 23,000 unique strategies in
this space, which severely limits the choice of analysis methods.
These strategies are fingerprinted and pairwise distances com-
puted, then hierarchical clustering reduces them to a manage-
able size for further experiments with multidimensional scaling
and the mutational connectivity network. Results indicate there
are no obvious cutoff scales of structure; mutational distance is
not correlated with fingerprint distance; and a level of similarity
with past results on smaller state spaces.

I. INTRODUCTION

A simple to understand model for simulating interactions

is the mathematical game; the simplest a game could get is a

simultaneous, symmetric two-move game, such as Prisoner’s

Dilemma. To preserve possibilities for complex strategies,

we iterate the game, allowing response and counter-response

to your opponent. One oft-used way of experimenting is with

evolutionary game theory, generating an unlimited stream of

arbitrarily convoluted strategies.

A series of papers [4], [3], [5] presented the concept

of fingerprinting, which turns the strategies into normal

mathematical functions recording the strategy’s behaviour

against a reference opponent, after which they become easier

to handle. This has enabled previously inattainable studies

in representational sensitivity [7], [8], evolutionary time and

population size [9], the effect of noise [10], [11] among

others.

Using the updated model presented in [1], which is a

generalization of the one in [4], avoids some problems

in the original specification, including discontinuities and

some distinguishing power limitations. We can also define a

distance on the space of fingerprints, quantifying the notion

of “similar” strategies.

Due to the combinatorial explosion, investigations into the

entirety of representations is difficult to perform; here we

attempt to push the limits one step further by looking into

a standard 3-state finite transducer representation. There are

93,312 nominal strategies; even after removing all duplicates

there are 23,000 unique strategies in the space: this effec-

tively prevents consideration of any cubic or worse analysis

method. We will still look into the global structure imposed
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by fingerprint distance, as well as the mutational connections

within the space.

This study differs from the previous work done in [2]

due to the change of metric involved: it is more natural to

define the distance between two probability distributions via

L1 (also well-known as the total variation distance [12])

rather than L2 distance, which would involve squares of

probabilities — it is not even mentioned in [12].

For example, under L2 the distance between Always

Cooperate and Always Defect (which is maximal) is non-

constant, depending on parameter values; under L1 it is iden-

tically 1. Still, this causes major ripple effects, many of which

come as consequences of breaking the nicer mathematical

structure of L2.

The rest of the paper is organized as follows: the finger-

print is defined and useful properties given in Section II, the

experiments are listed and described in Section III, the results

and interpretation follow in Section IV, finally the discussion

and conclusion are in Section V.

II. BACKGROUND

As developed in [1] and exposited in [2], the fingerprint

operator used in this study is based on the length-weighted

probability of a move pair occuring, when the given agent

plays against a parametrized k-state probabilistic finite state

transducer. We will restrict our consideration to a 1-state

machine, which can be parametrized as (x, y, z) ∈ [0, 1]3,
where x is the probability of cooperating on the initial move,

y is the probability of cooperating in response to a cooperate,

and z the probability of cooperating in response to a defect.

The operator takes as input a specification of

a game playing agent P , which is a function ρP
that gives the probability the agent plays as an

input move history s (a string of moves) up to its

length, given that its opponent plays as another input

move history w as directed. That is, ρP (s, w) =
Pr(∀i P plays si in turn i | ∀j opponent plays wj in turn j).
Call the parametrized opponent O1(~v) with ~v = (x, y, z),
and define ρO1(~v) similarly.

Denote by FP the output of the operator on P ; the

(m1,m2)th component of the fingerprint function is defined

as

FP (~v)m1m2
=

∞
∑

n=1

µ(n)
∑

(s,w) has length n
s ends with m1

w ends with m2

ρO1(~v)(w, s)ρP (s, w)

the first sum is the two-way probability the players play

(m1,m2) respectively on the nth move, weighting that by
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a given function µ(n). For special properties, we will use

the family of geometric distributions: µ(n;α) = (1 −
α)αn−1, α ∈ [0, 1). The limit as α → 1− exists and equals

the expected value, but we regain all the problems such as

discontinuity from using it.

To compute this for agents representable by finite state

transducers, create the following Markov chain: the state

space is Q × {C,D}2, the states of the agent paired

with the last moves of P then O1. The transition ma-

trix T has entries (q1,m1,m2) → (q2,m3,m4) equal to

Pr(P transitions from q1 to q2 outputting m3 seeing m2) ×
Pr(O1 outputs m4 seeing m1).
The fingerprint function is then

FP (x, y, z;α)m1m2
= (1−α)χT

m1m2

(

I−αT (y, z)
)

−1
Q0(x)

where χm1m2
be the indicator vector whose entry is 1 if the

state indexed has last move-pair (m1,m2), 0 otherwise, and

Q0(x) is the initial state probability vector.

Define the distance between two fingerprints using the L1

or statistical distance:

‖FP1 −FP2‖ =

∫

[0,1]3

∑

m

|(FP1 −FP2)(x, y, z)m| dxdydz

III. EXPERIMENTAL DESIGN

We consider a 3-state finite transducer representation for

Prisoner’s dilemma. This is a string, with an initial action,

and for each of 3 states, a 4-tuple (transition on cooperate,

action on cooperate, transition on defect, action on defect).

All actions are cooperate/defect, and transitions point to any

one of the 3 (labelled) states. The automaton always starts

at the lexicographically first state.

There are thus 2736 = 93, 312 representable strategies;

using standard state-minimization algorithms to remove du-

plicates, there are 23,000 unique strategies in the space. This

is comprised of 2,592 copies each of the 8 1-state strategies,

86–128 copies of the 288 2-state strategies, 2 copies each of

the 3-state strategies (as state 2 and 3 can be interchanged).

Each of the 23,000 strategies was fingerprinted, computed

using the matrix formula using the LAPACK linear algebra

package into a 4-component function of y, z for x = 0, 1
at α = 0.8, a value found in previous studies to have good

separation properties [2].

Approximate pairwise distances are calculated with a

composite third order product Gaussian cubature method

(4 points at (±1/
√
3,±1/

√
3) for the region [−1, 1]2, see

[13]) with a grid of 64× 64 evenly spaced squares (16,384

evaluation points). These are summed in a binary divide-and-

conquer fashion to decrease roundoff error.

Hierarchical clustering with the unweighted pair group

with arithmetic mean method (UPGMA) is performed on

this 23, 000 × 23, 000 distance matrix. The closest pair of

clusters is repeatedly merged, and the distance between two

clusters is defined to be the average over all possible pairs,

one from each cluster.

As the tree does not exhibit any strong cutoff points, we

pick a level of 980 clusters (by removing the 979 largest
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Fig. 1. Several measures of error in a set of sample calculations of
fingerprint distance. Note the log-log scale.

distance mergings), which is the last noticeable jump in

distance below 1000, for further analysis.

Metric multidimensional scaling is used to embed these

clusters into the Euclidean plane. This works by minimizing

the stress loss function
∑

i,j

wi,j(δi,j − di,j)
2

where wi,j is the product of the cluster sizes of i, j, δi,j
is the true distance of clusters i, j, and di,j is the distance

between the points on the plane representing clusters i, j.
The stress majorization SMACOF algorithm [14] is used

for this purpose, with the best fit chosen from multiple runs

starting at uniformly random initial points.

We can define a simple mutation operator that takes any

one position in the string representation and changes it to any

other value. This induces a mutational connectivity network

on the space that can be investigated, being an important

property of the representation. We take all 93,312 strategies

and find each of their 19 neighbours 1 mutation away, then

display the propensity of a cluster to mutate into each other

cluster.

IV. RESULTS

The distance matrix required 2 CPU-years to compute.

There is no mathematically proven error bound usable, so an

experimental approach was adopted.

A. Integration error

Random pairs of 3-state automata were generated, and

their fingerprint distance was approximated using the order

3 product Gaussian quadrature with various sizes of grids.

The exact integral is not analytically computable, and so

the same method with 16,777,216 evaluation points was used

as the ground truth. Statistics of the error of the method,

over 13,337 independent trials, were calculated and plotted

in Figure 1.

The results give strong experimental evidence that the

error of integration is bounded well below 10−6 (at 16,384

evaluation points). As the smallest nonzero distance is about

0.00179, integration error is not an issue.
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Fig. 2. The distance between clusters n and n+1 when combined in the
UPGMA hierarchical clustering tree. Note the logarithmic scale.

B. Colouring

Assigning a colour to each strategy allows extra dimen-

sions of information in a plot and perhaps we can find

correlations of position to colour. We propose here a schema:

Ignore the outputs for now and consider only the transition

graph of the automaton, which has 3 states and 7 edges

total (2 each from each state and the initializing edge). Run

the fingerprint calculation (1 − α)(I − αT )−1q0 assigning

each edge except the initializer a probability of 0.5, with the

same α = 0.8; q0 is the first state. This gives a probability

distribution on the 3 states; the initial ‘state’ has weight

1− α = 0.2.
The four 1-state strategies are coloured as follows: ALLC

(always cooperate) is green, ALLD (always defect) is red,

TFT (tit-for-tat) is blue, and PSY (reverse tit-for-tat) is black.

Consider only the actions taken while at each state, and give

each state the colour of its corresponding 1-state strategy.

Now weight the states according to the above probability

distribution, with the initial move assigned as ALLC/ALLD.

This average is the colour of the automaton. Because the

sum of all components is 1, being a probability vector,

assigning black (equivalently no contribution) to PSY allows

the nominally 4-dimensional surface to be fit conveniently in

3-dimensional RGB colour space.

For example, consider the strategy represented by the

string 0102001112021. The transition graph in matrix form

is

T =





0 0.5 0
0.5 0.5 0
0.5 0 1





with Tij the probability of transitioning from state j to state

i. Then (1−α)(I−αT )−1q0 is [3/11, 2/11, 6/11]. Thus the
colour of this strategy is (1−α) ·Green+α(3/11 ·Green+
2/11 · Red+ 6/11 · Blue).
The colour assigned to a cluster is a simple average of the

colours of each constituent automaton.

C. Hierarchical clustering

The distance between the clusters that are combined at

each step (the minimum distance between any two clusters
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Fig. 3. The best-fit weighted root mean square error in embedding the
pairwise distance matrix for the 980 clusters into R

n, for various n.

at that stage) is plotted in Figure 2. It may be a consequence

of the large number of points, but the distances do not

exhibit any clear jumps that would indicate distinct levels

of structure.

The distances also loosely fit to a logarithmic curve,

which suggests that the cloud of points are evenly dispersed

throughout the space. Cluster size after the merging at each

step (omitted, see Figure 4) says otherwise. That distribution

is very spread out, meaning many clusters are much larger

than others, even at the same cutoff distance — this shows

the points are not that evenly dispersed.

D. Multidimensional scaling

We chose a cutoff at 980 clusters mostly arbitrarily as

there are no clear levels of structure in the data. The UPGMA

algorithm is re-run until 980 clusters remain, then the reduced

distance matrix (now 980×980) is used for multidimensional

scaling.

Princical component analysis is not applicable because the

data has non-Euclidean geometry; indeed attempts to do so

(omitted) create a matrix, required to be positive semidefinite,

with almost half its eigenvalues negative. Further attempts to

ignore this and simply take the components corresponding

to the largest positive eigenvalues have the strange property

that approximation error increases beyond the first few.

To investigate the inherent dimensionality of the data under

MDS, the algorithm was re-run embedding the points into

different dimensions (the target space is a parameter choice).

The best-fit error versus dimension is shown in Figure 3. The

general idea is that if adding an extra dimension lowers the

error by an insignificant amount, then it is superfluous and

can be safely not done.

The results indicate that 3, possibly 4 dimensions suffice

to account for most of the data. The error is almost constant

beyond 6 dimensions; the residual error comes from the fact

that the data is non-Euclidean, and hence cannot be exactly

embedded in Euclidean space of any dimension at all.

A scatter plot in 3 dimensions is too difficult to handle, and

so we choose to use the 2-dimensional fit, knowing that there

is a dimension in the data left undisplayed. The root mean

square error is 0.03158, with the maximal distance being 1.



These points, now explicitly in Euclidean space, are rotated

to the princical components.

The clusters are plotted in Figure 4, with the colouring

scheme described in Section IV-B. The first major impli-

cation from the plot is that the colouring scheme is clearly

reflected in the position of the points: there is a strong corre-

lation with the colour green with the positive y-direction, red
with negative y, blue with positive x and black with negative

x.
This proves that the scheme works, as well as that the 8 1-

state strategies are important — ALLC and ALLD are at the

extreme edges of the plot, while TFT and PSY are close to

the boundary (only a few tiny clusters are further out in the

x direction). These are the much larger clusters, with sizes

ranging from 2,592 (two of them are purely TFT and purely

PSY) to 2,922 (ALLC and other nearby strategies).

Notice the symmetry of the configuration: the axis of

symmetry involves replacing an automaton with another that

plays its reverse move at every step. From the plot it seems

this induces a rotational symmetry in the points. There is

still an evocative semblance to reflective symmetry across

both the coordinate axes.

E. Princical components

We hypothesize here, by analogy with the results in [1],

[2], that the 2 principal components in the embedded clusters

correspond to cooperativity (propensity to favour one move

over the other), and coordination (how correlated your move

is to your opponent’s).

This is bourne out by the striking gradient of colours in

Figure 4, which suggests a quantitative test: we can measure

the Pearson correlation coefficient between the colouring of

the clusters and their position.

We use as a measure of cooperativity the linear predictor

Green− Red in the colouring scheme (bounded between -1

and 1), and for coordination the predictor Blue− Black.

The Pearson correlation (bounded in [-1,1]) between

Green− Red and the y-coordinate of the points is 0.99857,

between Blue − Black and the x-coordinate 0.93469. We

consider the hypothesis proven beyond a reasonable doubt.

F. Cluster-wise mutation

To make the data easier to display, we reduce the number

of clusters to 139 the same way (removing the 138 largest

distance mergings done by UPGMA). Each automaton in the

space has 19 neighbours according to our simple string-based

mutation.

We compute for each cluster i the probability distribution

of which cluster j it moves to in 1 mutation, by averaging

over all automata in the cluster. This can be displayed as a

heatmap in Figure 5. The ordering of the clusters is as the

hierarchical clustering tree: if two clusters would be merged

in the (removed) UPGMA, they are adjacent. The colour bar

displays each cluster’s colour and can be compared to the

colours of the points in Figure 4.

One feature that leaps out of that map is the special

properties of the 1-state automata: not only are they the

largest clusters, they also have the highest probability of

null mutations, as evidenced by the brightest colour of those

squares. This is not surprising, as one way of having a 1-state

automaton is by completely not using a state or two — all

mutations that affect unreachable states are inherently null.

Several larger-scale squares (groups of adjacent clusters)

can be discerned by their relative reachability under mutation

— a lot of mutations do not move you far from the diagonal,

hence to a nearby cluster.

A distinct band at mid-range can be seen: that is a mutation

that crosses the axis dividing the ALLC/ALLD halves of the

space. Note that the outer diagonals of the entire heatmap

are empty: there is no way to go from ALLC to ALLD in 1

move.

V. DISCUSSION AND CONCLUSION

Hierarchical clustering shows that this space of strategies

is mostly dispersed, but in an uneven manner. With multidi-

mensional scaling, 980 clusters of strategies were embedded

into the plane and show a high degree of symmetry across

both principal component axes.

A simple colouring scheme based on the fraction of time a

strategy plays (for one move) as each of the 1-state strategies

(against a RANDOM opponent) is dramatically successful in

explaining the spatial distribution of the clusters. The smooth

colour gradient in the scatter plot of Figure 4 is evidence of

that.

Furthermore, the simple linear predictor, fraction of time

as ALLC minus fraction of time as ALLD, has an almost

perfect correlation with the y-coordinate of the clusters,

meaning not only is this dominant direction seen to be

cooperativity, it can be precisely quantified as well.

The analogous linear predictor (fraction as TFT minus

fraction as PSY) has an extremely high correlation with the

x-coordinate. Thus the second principal coordinate of the

strategy space is seen to be coordination. That the correlation

is less perfect may be due to the use of 2 instead of 3 or

4 dimensions, as identified by the error-vs-dimension plot

Figure 3.

Repeating these experiments with the data embedded into

4 dimensions can verify these results, as well as possibly

find the interpretation of the third and fourth coordinates.

From comparison to [2], it is interesting that the dominant

two components (at α = 0.8) still retain their role, even

as the underlying metric is modified, and the representation

changed. This serves as validation that the specific choice of

metric did not severely affect the data. Also in [2], the third

coordinate was found to be bias, or favouring one move over

another. It would be interesting to see if that hypothesis holds

for this data.

Another direction for future work is replicating the analy-

sis for different choices of α, which was not done here due

to computational constraints.

The mutational heatmap confirms several aspects of the

hierarchical clustering, as several larger-scale clusters tend

to retain members under mutation. The 1-state strategies are

distinguished by their highest propensity for null mutations,



-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2  0.25  0.3

Fig. 4. Scatter plot of all 93,312 strategies, reduced to 980 clusters with UPGMA hierarchical clustering, projected to 2D with metric MDS. Point size
(area) is directly proportional to cluster size; for colouring see section IV-B; axes are rotated to principal components, positive orientation is arbitrary.



Fig. 5. Single mutation connectivity heat-map: cluster width is proportional to size and clusters are listed in the hierarchical tree order. Rectangle (i, j)
has as value the (cluster average) probability of transitioning from cluster i to cluster j in one mutation: the colourmap is piecewise linear, black at 0, red
at 0.25, yellow at 0.5 and white at 1.0. The colour bar on the bottom displays each cluster’s colour as in section IV-B.



as well as their large cluster size. This may explain their

relative frequency of occurrence in evolutionary experiments.

In conclusion, the structure of a space of 3-state automata

under the fingerprint metric was investigated using a variety

of tools. It was found to be dispersed in an irregular manner,

have at most 4 or 5 major dimensions, of which the top 2

are cooperativity and coordination. A simple quantification

of these attributes was found and enjoys unqualified success.

Next steps for exploring more strategy spaces, and pos-

sibly confirming that the dominiant coordinates in general

strategy spaces is invariant, include a grid of probabilistic

automata. Leaving behind the restriction that the strategies be

deterministic offers a good chance for encountering different

“coordinates”.

The other way to avoid the crushing weight of combina-

torial explosion is to use a sampling technique. As usual

evolutionary experiments would use representations of no

less than 8 states, an attempt to catalogue that space would

prove more directly applicable.

A further, direct test of the similarity of representations is

to combine them into one set for analysis. Then using the dis-

tance matrix across the representations allows quantification

of how different they are, especially with regards to their

principal coordinates. The use of multiple representations

simultaneously for comparison has been pioneered in [6],

and a theoretical counterpart would be valuable.
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